On general Cwikel-Lieb-Rozenblum and Lieb-Thirring inequalities
نویسندگان
چکیده
These classical inequalities allow one to estimate the number of negative eigenvalues and the sums Sγ = ∑ |λi| for a wide class of Schrödinger operators. We provide a detailed proof of these inequalities for operators on functions in metric spaces using the classical Lieb approach based on the Kac-Feynman formula. The main goal of the paper is a new set of examples which include perturbations of the Anderson operator, operators on free, nilpotent and solvable groups, operators on quantum graphs, Markov processes with independent increments. The study of the examples requires an exact estimate of the kernel of the corresponding parabolic semigroup on the diagonal. In some cases the kernel decays exponentially as t → ∞. This allows us to consider very slow decaying potentials and obtain some results that are precise in the logarithmical scale. MSC: 35P15, 47A75, 47B99, 20P05, 60J70.
منابع مشابه
New Bounds on the Lieb-thirring Constants
are known as Lieb-Thirring bounds and hold true with finite constants Lγ,d if and only if γ ≥ 1/2 for d = 1, γ > 0 for d = 2 and γ ≥ 0 for d ≥ 3. Here and in the following, A± = (|A| ± A)/2 denote the positive and negative parts of a self-adjoint operator A. The case γ > (1 − d/2)+ was shown by Lieb and Thirring in [21]. The critical case γ = 0, d ≥ 3 is known as the Cwikel-Lieb-Rozenblum inequ...
متن کاملEigenvalue Estimates for Schrödinger Operators on Metric Trees
We consider Schrödinger operators on regular metric trees and prove LiebThirring and Cwikel-Lieb-Rozenblum inequalities for their negative eigenvalues. The validity of these inequalities depends on the volume growth of the tree. We show that the bounds are valid in the endpoint case and reflect the correct order in the weak or strong coupling limit.
متن کاملA Simple Proof of Hardy-lieb-thirring Inequalities
We give a short and unified proof of Hardy-Lieb-Thirring inequalities for moments of eigenvalues of fractional Schrödinger operators. The proof covers the optimal parameter range. It is based on a recent inequality by Solovej, Sørensen, and Spitzer. Moreover, we prove that any non-magnetic Lieb-Thirring inequality implies a magnetic Lieb-Thirring inequality (with possibly a larger constant).
متن کاملCwikel’s Theorem and the Clr Inequality
We give a short proof of the Cwikel–Lieb–Rozenblum (CLR) bound on the number of negative eigenvalues of Schrödinger operators. The argument, which is based on work of Rumin, leads to remarkably good constants and applies to the case of operator-valued potentials as well. Moreover, we obtain the general form of Cwikel’s estimate about the singular values of operators of the form f(X)g(−i∇).
متن کاملConnection between the Lieb–Thirring conjecture for Schrödinger operators and an isoperimetric problem for ovals on the plane
To determine the sharp constants for the one dimensional Lieb– Thirring inequalities with exponent γ ∈ (1/2, 3/2) is still an open problem. According to a conjecture by Lieb and Thirring the sharp constant for these exponents should be attained by potentials having only one bound state. Here we exhibit a connection between the Lieb–Thirring conjecture for γ = 1 and an isporimetric inequality fo...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2009